Quantum Information using Optical Superlattices Spin Squeezing & Quantum Phase Diffusion

S. Trotzky, S. Kuhr, S. Fölling, U. Schnorrberger, J. Thompson

WP2,WP3,WP4,WP5,WP6

DLAQUI Review Meeting 2008,

MAINZ Contributions

• WP2 Addressing, manipulating and measuring on single sites D5 Addressing single sites in optical lattices, M2.2

• WP3 Two-qubit gates and compatible stable qubits

D6 Assessment of experimental feasibility for existing qubit encodings and quantum gate schemes, M3.1.1, M3.1.2, M3.1.7 D7 Novel two-qubit gate schemes, M3.1.7

• WP4 Generation and characterization of multi-particle entangled states

D8 Experimental generation of multi-particle entanglement in optical lattices, M4.1.2, M4.1.3, M4.1.7, M4.1.8

D9 Measures and measurement procedures for multi-particle entanglement, M4. I

WP5 Strategies for minimizing decoherence

D11 Experimental realization of optical lattices with minimized decoherence M5.1,M5.2, M5.3, M5.4, M5.5, M5.6

Robust multi-particle entanglement via spin changing collision $\hbar\omega$ A. Widera et al., Phys. Rev. Lett., 95, 190405, (2005) $(m_3 = +1, m_4 = -1)$ $(m_1=0, m_2=0)$ $(\uparrow,\downarrow\rangle+|\downarrow,\uparrow\rangle)\otimes|0,0\rangle$ Spin Triplet $\left|\uparrow\right\rangle_{L}\left|\downarrow\right\rangle_{R}+\left|\downarrow\right\rangle_{L}\left|\uparrow\right\rangle_{R}$ **Entangled Bell state**

Superexchange Coupling in Quantum Dots

Local control of spin states & interactions between spin states.

J.R. Petta et al., Science **309**, 2180 (2005)

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Superexchange induced flopping

Counting Atoms using Interaction Blockade Induced Tunnelling Resonances

"Coulomb" Blockade Type Tunnelling Resonances

Entanglement generation possible for non-adiabatic crossings!

Higher order tunnelling: S. Fölling et al., Nature **448**, 1029 (2008) P. Cheinet et al., Phys. Rev. Lett. **101**, 090404 (2008)

Measuring Atom Number Statistics

Quantum Phase Diffusion and Spin Squeezing

Contribution to WP4

Probing Many-Body States via Quantum Phase Diffusion

Phase Diffusion Dynamics

Quantum state in each lattice site (e.g. for a coherent state)

$$\left(\left|\Psi(t)\right\rangle_{i}=e^{-|\alpha|^{2}/2}\sum_{n}\frac{\alpha^{n}}{\sqrt{n!}}e^{-i\frac{1}{2}Un(n-1)t/\hbar}\left|n\right\rangle\right)$$

Matter wave field on the ith lattice site

$$\Psi_{i}(t) = \langle \Psi(t) | \hat{a}_{i} | \Psi(t) \rangle_{i}$$

- 1. Matter wave field collapses but revives after times multiple times of h/U !
- 2. Collapse time depends on the variance $\sigma_{\rm N}$ of the atom number distribution !

Theory: Yurke & Stoler, 1986, F. Sols 1994; Wright et al. 1997; Imamoglu, Lewenstein & You et al. 1997, Castin & Dalibard 1997, E. Altman & A. Auerbach 2002,
 Exp: M. Greiner et al 2002, G.-B. Jo et al 2006, J. Sebby-Strabley et al. 2007, M. Oberthaler
 Similiar to Collapse and Revival of Rabi-Oscillations in Cavity QED !

Phase Diffusion in Spin Language

$$H = -J\hat{S}_x + U\hat{S}_z^2$$

$$\hat{S}_x = (\hat{a}_1^{\dagger} \hat{a}_2 + \hat{a}_2^{\dagger} \hat{a}_1)/2$$
$$\hat{S}_y = (\hat{a}_1^{\dagger} \hat{a}_2 - \hat{a}_2^{\dagger} \hat{a}_1)/2$$
$$\hat{S}_z = (\hat{n}_1 - \hat{n}_2)/2$$

From Spin Squeezing to Schrödinger Cats - Nonlinear Quantum Spin Dynamics -

What happens if you tune interactions in larger ensembles?

$$\begin{aligned} \hat{\left(\hat{a}^{\dagger} + \hat{b}^{\dagger}\right)^{\otimes N}} |0\rangle \\ \hat{H} = \chi \hat{S}_{z}^{2}
\end{aligned}$$

$$\chi = a_{aa} + a_{bb} - 2a_{ab}$$

Nonlinear Spin Dynamics in 1D Quantum Spin Systems

Reversing the Coherent Dynamics

A. Widera et al. Phys. Rev. Lett. (2008)

Dynamics can only be partly reversed...

Why?

Quantum Fluctuations in 1D!

Predict dynamical evolution using a Luttinger Liquid approach (effective Hamiltonian for low energy behaviour of ID system) (cp. Haldane)

Here we need to employ a two component version of Haldane's approach!

For $a_{\uparrow\uparrow} \approx a_{\downarrow\downarrow}$ elementary excitations decouple into independent density and spin part!

<u>Spin part:</u>

$$H_{S} = \int dx \left[g_{s} \hat{m}_{z}^{2} + \frac{n_{tot}}{4M} \left(\nabla \hat{\phi}_{s} \right)^{2} \right]$$

$$\hat{\phi}_{s}(x) = \phi_{0} + \sum_{q \neq 0} (2qLK/\pi)^{-1/2}$$

 $e^{-|q|/2q_{c}}(q) \left[e^{iqx} \hat{a}_{q} + h.c. \right]$

By reversing the interaction energy, we only completely reverse the dynamics for the q=0 mode!

Reversing the Coherent Dynamics

Dynamics can only be partly reversed...

interaction reversal does not take into account quantum fluctuations in ID

Quantum Simulations WP6

Superfluid-Mott Insulator Transition QMC vs Exp.

Vanishing of Tc when QCP is approached

Momentum distributions for U/J=8.11

ETHZ, UMass, Mainz joint theory-exp project

S. Trotzky, L. Pollet et al. (in preparation)

MAINZ Contributions

• WP2 Addressing, manipulating and measuring on single sites D5 Addressing single sites in optical lattices, M2.2

• WP3 Two-qubit gates and compatible stable qubits

D6 Assessment of experimental feasibility for existing qubit encodings and quantum gate schemes, M3.1.1, M3.1.2, M3.1.7 D7 Novel two-qubit gate schemes, M3.1.7

• WP4 Generation and characterization of multi-particle entangled states

D8 Experimental generation of multi-particle entanglement in optical lattices, M4.1.2, M4.1.3, M4.1.7, M4.1.8

D9 Measures and measurement procedures for multi-particle entanglement, M4. I

WP5 Strategies for minimizing decoherence

D11 Experimental realization of optical lattices with minimized decoherence M5.1,M5.2, M5.3, M5.4, M5.5, M5.6

Summary & Outlook

- Creation and loading of atoms in optical superlattices
- Single Qubit State Manipulation
- Massively Parallel Creation of Bell Pairs
- Characterization of Bell Pairs
- Measurement of Coherence Time of Single Qubits and Bell Pairs
- Controllable Superexchange Spin-Spin Interaction
- Novel Multiparticle Entanglement Schemes for Generation of Robust MP Entangled Quantum States
- Multiparticle Entanglement via Spin-Squeezing in ID Quantum Systems
- Investigation of Dynamical Effects in Mode-Squeezed ID Luttinger Liquids
- Interaction Blockade Mechanism to Count Single Atoms/Number Statistics
- Collapse & Revival for cat state generation/number state resolution achieved
- Quantum Simulations (Fermionic Atoms/Bosonic Atoms)
- Light Storage/Generation in Mott Insulators

FP6-2002-IST-C